

Structural Analysis of a Scientific Balloon Using Assumed Strain Formulation Solid Shell Finite Elements

Keejoo Lee and Sung W. Lee

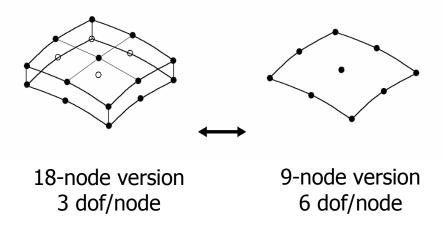
Department of Aerospace Engineering University of Maryland, College Park

FEMCI, May 4, 2005

Motivation & Objective

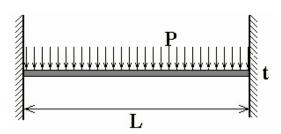
- Structural analysis of gossamer structures is challenging due to their extreme flexibility:
 - The effective range of length-to-thickness ratio (L/t) and radius-to-thickness ratio (R/t) for assumed strain solid shell formulation must be determined.

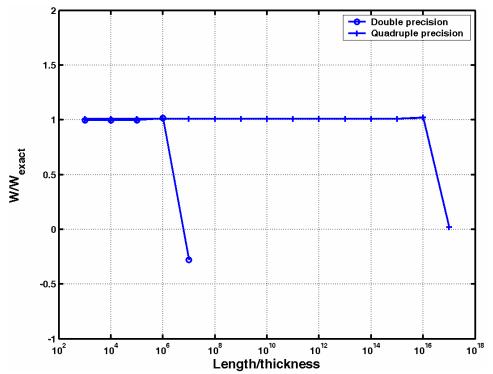
- To investigate applicability of quadruple precision assumed strain formulation solid shell elements to gossamer structures.
 - Solar sail ribbons under their own weight.
 - Wrinkling formation in a square membrane.
 - Shapes and stresses of an ascending scientific balloon.



Assumed Strain Solid Shell Formulation

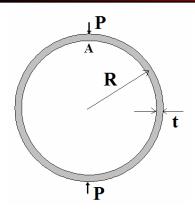
- Assumed strain formulation to avoid element locking
 - Strain field independent of displacement, eliminated at element level
- Solid shell formulation
 - Treats shells as 3D solids: transverse shear/extension deformation
 - Kinematic variables in a vector form: no angles


• 54-dof elements

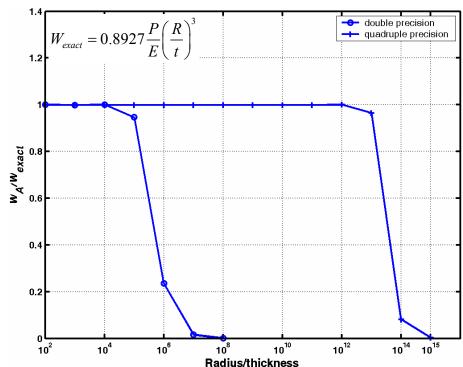


Shear Locking Test

- Clamped beam subjected to pressure P
- Flat structures (varying t)
- Geo. Linear tests to determine the effective range of L/t

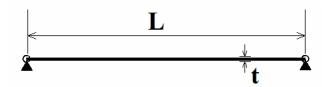


- Effective range of L/t
 - Double precision: Max $L/t = 10^6$
 - Quadruple precision: Max $L/t = 10^{16}$



Membrane Locking Test

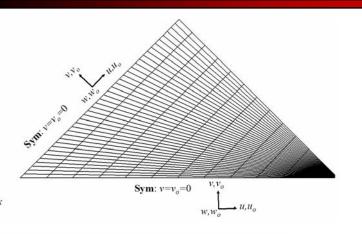
- Pinched ring (R=100 m)
- Thin curved structures (varying t)
- Geo. Linear analysis to determine the effective range of R/t



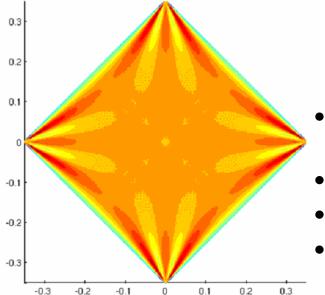
- Effective range of R/t
 - Double precision: $Max R/t = 10^4$
 - Quadruple precision: Max $R/t = 10^{12}$

Solar Sail Ribbons

- Geometry of pinned ribbons: $L=(100 \text{ m}, 1 \text{ km}, 10 \text{ km}), t=10^{-6} \text{ m}$
- Material: Kapton (E=2.6 GPa, v=0.3, $\rho=1420 \text{ kg/m}^3$)+
- Geo. nonlinear static analysis to determine the deflection under own weight
 - A loading scheme that activates small bending stiffness of membranes is introduced. Weight ($P_o = \rho gt$) applied as $P = P_o \times 10^{-m}$, m = 20,15,10,5,0
 - **No Stabilizing Schemes** (pre-tension/artificial damping/explicit dynamic)


L (m)	t (m)	Mesh	*Exact W _{max}	Analysis W _{max}
10 ²	10-6	10x2	-2.927	-2.927
10 ³	10-6	10x2	-6.307x10	-6.301x10
104	10-6	10x2	-1.359x10 ³	-1.354x10 ³

⁺ Wang, J. T., Chen, T., Sleight, D. W. and Tessler, A., 5th Gossamer Spacecraft Forum, 2004



Wrinkling Formation

- A square membrane: L=0.5, $t=2.54x10^{-5}$ (m)
- Subjected to tension (2.45 N) at four corners
- Material identical to solar sail ribbons
- Due to symmetry, one eighth with 6x20
- Modeling techniques* adopted
 - elimination of sharp corners
 - corner force replaced by distributed force
 - random out-of-plane imperfections in corners

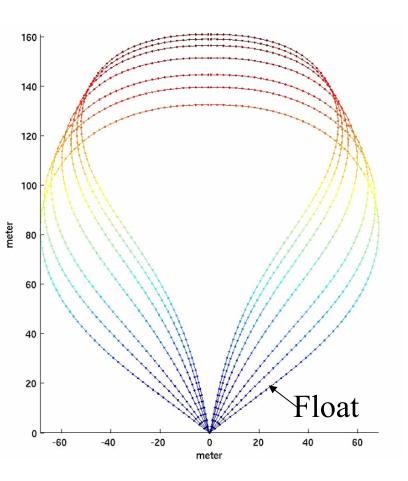
- Geo. nonlinear static analyses with quadruple precision assumed strain solid shell elements
- No stabilizing schemes
- Four wrinkles across corner (Amp: -0.61 ~ 0.25 mm)
- Further study to quantify amplitudes

A Scientific Balloon

A zero-pressure scientific balloon is considered as follows:

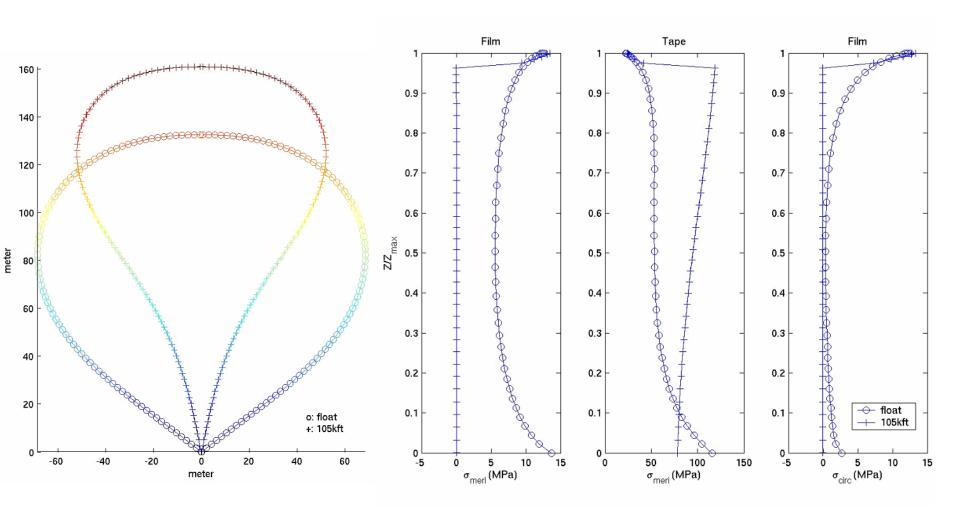
D. Altitude	37.5 (km)	W. payload	35.23 (kN)	E. tape (GPa)	2.813
D. Volume	1.12 (MCM)	Film density	1.805x10 ³ (kg/m ³)	E. skin (GPa)	0.301
# of gores	172	Tape density	4.316x10 ³ (kg/m ³)	v. skin	0.83

- Computational modeling of scientific balloons are challenging due to their extreme flexibility and under-constrained nature.
 - Ratio of gore-length to skin-thickness $\sim 10^7$
 - Quadruple precision required


Gore length 201.35		Radius at the apex	0.53	
Skin thickness	2.0x10 ⁻⁵	Film thickness	5.1x10 ⁻⁵	
Film width	5.1x10 ⁻²	Radius at the nadir	0.078	

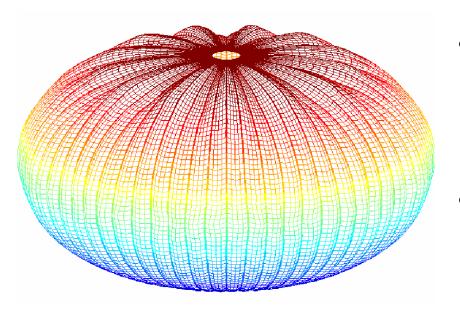
A Scientific Balloon (Cont.)

• Buoyancy as lift, equal to sum of the pressure differential across the skin surface over the entire balloon.



- Interdependency of pressure & shape:
 - Shape change depends on pressure.
 - Pressure depends on shape change.
 - Must be simultaneously determined in a repetitive manner
- In addition, payload and distributed material weight considered
- Structural analysis under two primary premises:
 - Rotational symmetry through deployment.
 - Inertia effect ignored
- From the design configuration at float, geo. nonlinear static analysis continues to lower altitudes.

A Scientific Balloon (Cont.)



Conclusions & Future Work

- The effective range of L/t and R/t increases with quadruple precision for the assumed strain solid shell element formulation.
- The finite element method based on this special formulation provides an efficient analysis tool for gossamer structures such as solar sail ribbons and scientific balloons.

- Stability analysis for super-pressure scientific balloons can be carried out using the quadruple precision assumed strain solid shell element formulation.
- A parallel solver has been developed to accommodate increased problem size.